TD 2 : Condition de Dirichlet et éléments finis \mathbb{P}^2

Exercice 1

Considérons un ouvert Ω de \mathbb{R}^2 , borné et polygonal. Le bord $\partial\Omega$ est décomposé en deux parties, Γ_D et Γ_F telles que $\Gamma_D \cap \Gamma_F = \emptyset$ et $\Gamma_D \cup \Gamma_F = \partial\Omega$. Soit également une fonction g de $\mathscr{C}^0(\Gamma_D)$, $\alpha > 0$ une constante positive et $f \in L^2(\Gamma_F)$. Nous cherchons à résoudre le problème suivant

$$\begin{cases}
-\Delta u = 0 & (\Omega) \\
u = 0 & (\Gamma_D) \\
\partial_{\mathbf{n}} u + \alpha u = f & (\Gamma_F)
\end{cases}$$

Question 1 : En précisant bien l'espace V, sa norme $\|\cdot\|_V$ et les formes $a(\cdot,\cdot)$ et $\ell(\cdot)$, montrer que le problème admet pour formulation variationnelle

$$\begin{cases} \text{ Trouver } u \in V \text{ tel que} \\ \forall v \in V, \quad a(u, v) = \ell(v). \end{cases}$$

Question 2 : Montrez que ce problème admet une unique solution.

Exercice 2

Considérons un ouvert Ω de \mathbb{R}^2 , borné et polygonal. Soit une fonction g de $\mathscr{C}^0(\partial\Omega)$ et le problème suivant

$$\begin{cases}
-\Delta w &= 0 & (\Omega) \\
w &= g & (\partial \Omega)
\end{cases}$$

Question 1 : En choisissant soigneusement une nouvelle inconnue u, montrez que le problème cidessus est équivalent à un autre problème, portant sur u, avec une condition de Dirichlet homogène.

Question 2 : En précisant bien l'espace V, sa norme $\|\cdot\|_V$ et les formes $a(\cdot,\cdot)$ et $\ell(\cdot)$, montrer que le problème admet pour formulation variationnelle

$$\begin{cases} \text{Trouver } u \in V \text{ tel que} \\ \forall v \in V, \quad a(u, v) = \ell(v). \end{cases}$$

Question 3 : Montrez que ce problème admet une unique solution.

2 TD 2. TD 2

Exercice 3

Considérons le triangle de référence \widehat{K} de sommet $\widehat{\mathbf{s}}_1 = (0,0)$, $\widehat{\mathbf{s}}_2 = (1,0)$ et $\widehat{\mathbf{s}}_3 = (0,1)$. Nous notons $\widehat{\varphi}_i$ la fonction \mathbb{P}^1 sur \widehat{K} et telle que $\widehat{\varphi}_i(\widehat{\mathbf{s}}_i) = \delta_{i,j}$.

Question 1 : Montrez que $\sum_{i=1}^{3} \widehat{\varphi}_{i}(\xi, \eta) = 1$ pour tout $(\xi, \eta) \in \widehat{K}$.

Question 2 : Considérons maintenant un triangle K quelconque de sommets \mathbf{s}_1^K , \mathbf{s}_2^K et \mathbf{s}_3^K . Nous notons φ_i la fonction \mathbb{P}^1 sur K et telle que $\varphi_i(\mathbf{s}_j^K) = \delta_{i,j}$. En se rappelant qu'une transformation inversible T^K pour passer du triangle de référence \widehat{K} au triangle K est :

$$\begin{split} T^K \colon & \widehat{K} & \to & K \\ & (\xi, \eta) & \mapsto & (x, y) = \sum_{i=1}^3 \mathbf{s}_i^K \widehat{\psi}_i(\xi, \eta), \end{split}$$

où les fonctions géométriques $\hat{\psi}_i$ sont ici égales à $\hat{\varphi}_i$. Montrez que

$$\forall (x,y) \in K, \qquad \varphi_1(x,y) + \varphi_2(x,y) + \varphi_3(x,y) = 1.$$

Les fonctions φ_i sont aussi appelés fonctions barycentriques de (x, y).

Exercice 4

Pour tout ouvert ω de \mathbb{R}^2 , on définit par $\mathbb{P}^2(\omega)$ l'espace des polynômes de degré 2 sur ω :

$$\mathbb{P}^2(\omega) = \left\{ p \in \mathbb{C}[X] \mid \exists a, b, c, d, e, f \in \mathbb{C} \mid \forall (x, y) \in \omega, p(x, y) = ax^2 + by^2 + cxy + dx + ey + f \right\}.$$

L'espace des éléments finis \mathbb{P}^2 – Lagrange V_h^2 st alors défini par :

$$V_h^2 = \left\{ \nu_h \in \mathcal{C}^0(\overline{\Omega}) \;\middle|\; \forall K \in \mathcal{T}_h, \nu|_K \in \mathbb{P}^2(K) \right\}.$$

Considérons le triangle de référence \widehat{K} de sommet $\widehat{\mathbf{s}}_1 = (0,0)$, $\widehat{\mathbf{s}}_2 = (1,0)$ et $\widehat{\mathbf{s}}_3 = (0,1)$.

Question 1 : Rappelez l'expression (exacte) des trois fonctions de forme \mathbb{P}^1 , $(\varphi_i)_{1 \le i \le 3}$ sur le triangle de référence (en coordonnées paramétriques : (ξ, η)).

Nous introduisons 3 nouveaux nœuds sur le triangle $\widehat{K}: \widehat{\mathbf{s}}_4(1/2,0)$, $\widehat{\mathbf{s}}_5(1/2,1/2)$ et $\widehat{\mathbf{s}}_6(0,1/2)$. Les fonctions de base \mathbb{P}^2 , notés $\widehat{\phi}_i \in \mathbb{P}^2(\widehat{K})$, pour $i=1,\ldots,6$ sont définies par $\widehat{\phi}_i(\widehat{\mathbf{s}}_j) = \delta_{i,j}$ pour $1 \leq i,j \leq 6$.

Question 2 : Montrez que, pour tout jeu de 6 données complexes $(\alpha_i)_{1 \le i \le 6}$, il existe un unique polynôme p de $\mathbb{P}^2(K)$ tel que $p(\widehat{\mathbf{s}}_i) = \alpha_i$, pour $i = 1, \dots, 6$.

Question 3 : Déterminez l'expression de chaque $\widehat{\phi}_i$, pour i = 1, ..., 6. On pourra s'aider de la question précédente et des fonctions de forme $\mathbb{P}1$ puisque $\widehat{\varphi}_i \widehat{\varphi}_j \in \mathbb{P}^2(\widehat{K})$.

Question 4 : Montrez que la famille $(\widehat{\phi}_i)_{1 \le i \le 6}$ est libre.